中国商业联合会商贸物流与供应链分会

中国商业联合会商贸物流与供应链分会
您现在的位置: 首页 > 资讯 > 行业资讯 > 正文

真正的物流大数据挖掘思路

时间:2015-08-10 15:56:47 点击:
来源:PPV课大数据 作者:

条评论打印收藏

数据丰富性:在海量的轨迹数据背后隐藏着全国实时路况信息、物流运输状态信息和我国不同区域经济发展水平以及供需关系的变化。对于我国道路基础建设、交通路径规划、物流车辆调度、经济指标预测等方面有着积极意义。

准备如何挖掘这些数据?

轨迹数据挖掘,是指从大量轨迹数据的集合 C 中发现隐含模式m 和知识 n 的结果 S。因此,轨迹数据挖掘的过程可以看作为一个函数:£ : C→S(m, n),输入是轨迹数据,输出是隐含模式 m 和知识 n。通过使用某些技术、理论,从大量的轨迹数据提取模式、发现庞大知识的一个过程。

轨迹数据挖掘发现的知识类型和所使用的方法密切相关,所发现的知识的价值受到数据挖掘算法的影响,目前常用的轨迹数据挖掘技术有规则归纳、概念簇集、关联发现等。目前的轨迹数据挖掘研究工作中主要为轨迹聚类、轨迹分类、离群点检测、兴趣区域、隐私保护、位置推荐等方面。

物流数据挖掘做什么用?

物流车辆的海量大数据中包含着许多关于交通路况、车辆运行甚至社会经济发展动态的信息。通过统计分析车辆行驶距离、停车时间、地理位置、车辆特征等多个维度的信息可以发现货运车辆的行为特征、区域物流的流量分布等,为物流公司提供基于时间、成本、路线等车辆调度的应用服务提供了可靠的理论依据和技术支持,同时也可以为政府提供物流运价指数、货运效率指数等优先经济指标。

联盟微信二维码 文章下.jpg

 2/2   首页 上一页 1 2

关键字: 物流大数据,物流大,数据

0条评论

网友评论
   

     评论仅代表个人意见,本网站保持中立

Baidu
map